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On the stability of rivulet flow 
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The aim of the present work is to investigate the existence regions of the different 
flow patterns exhibited by a liquid flowing down an inclined plane for a wide range 
of physical properties of the fluid (particularly surface tension and viscosity which 
were found to have the greatest influence). A model that predicts the decay 
frequency of oscillating or pendulum rivulets is presented. From this model, a 
stability criterion for the onset of oscillating rivulet flow is derived. Although the 
model does not contain any freely adjustable parameters, it shows good agreement 
with experimental measurements of rivulet decay frequency and of the transition 
point to pendulum rivulet. The transitions between different flow regimes are 
expected to cause drastic changes in heat and mass transfer rates between the liquid 
and the solid surface or between the liquid and the surrounding gaseous phase. 

1. Introduction 
The flow of a liquid down an inclined surface is of importance for a number of 

industrial processes, including gas-liquid contacting equipment in distillation and 
absorption, dry patch formation on heated surfaces, liquid film drainage from steam 
turbine stator blades, etc. For such a simple geometry, a relatively large number of 
hydrodynamic regimes can be easily observed, depending on the characteristics of 
the liquid and the solid surface. 

An understanding of the individual flow regimes and of the transition points 
between them allows better prediction of heat and mass transfer rates in a variety 
of industrial processes and a rational design of packings for gas-liquid contacting 
devices. 

The best known regime is probably the flow of a liquid on an inclined plane as a 
film. Over the last decades a large amount of work has been devoted to it, starting 
with the analysis by Nusselt (1916). However, the publications dealing with other 
flow regimes are surprisingly scarce. Some investigators (Hartley & Murgatroyd 
1964; Bankoff 1970; Mikielewicz & Moszynski 1976) developed theories for film 
stability and breakdown which were the basis of much of the subsequent work on 
rivulet flow. Other publications, for example, Hobler & Czajka (1964) and Munakata, 
Watanabe & Miyashita (1975) have dealt with the problem of determining the 
minimum flow rate for complete surface wetting. Finally, a small number of workers 
have investigated the hydrodynamics of droplet and rivulet flow (Towel1 & Rothfeld 
1966; Kern 1969; Nakagawa & Scott 1984; Doniec 1984; Dussan V. 1985). Most 
theoretical analyses are based on energetic considerations (Bankoff 1970 ; Mikielewicz 
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& Moszynski 1976; Hobler & Czajka 1964; Doniec 1988). Such analyses are based on 
the assumption that the stable flow regime will be found at a minimum of the total 
energy function, the definition of this energy function depending on the particular 
problem investigated. Other authors (Hartley & Murgatroyd 1964; Munakata et al. 
1975) make use of dynamic considerations (equilibrium of forces) at the point of 
stagnation over the dry spot. 

With respect to practical applications, most effort has been given to observing the 
conditions under which a thin liquid film driven along by gravity or shear stress 
applied at  the free surface breaks into a series of rivulets. Hartley & Murgatroyd 
(1964), Bankoff (1970), Mikielewicz & Moszynski (1976) and Doniec (1988) used an 
energy criterion to describe film breakdown theoretically. 

Some work has also been done on the subject of the meander region. Earlier 
authors like Tanner (1960) and Gorycki (1973) held helicoidal flow responsible for 
causing the meander-shaped stream. This thesis has been contradicted by Nakagawa 
(1982) and Nakagawa & Scott (1984). The same authors observed and qualitatively 
described the regions of existence of droplets and linear, meandering and oscillating 
rivulets depending on flow rate and surface slope but their work only describes one 
solid-liquid system (water/Plexiglas). 

2. Qualitative description of the flow of a liquid down an inclined plane 
The following qualitative discussion is meant solely to illustrate the different flow 

patterns and no specific values of the transition points between the different regimes 
will be given. A quantitative description will be presented in the next sections. 

When a liquid flows down an inclined flat surface several different flow regimes can 
be observed, depending on the flow rate, the physical properties of the liquid-solid 
surface system and on the inclination of the surface. 

Film flow is usually encountered in the flow of a ‘well wetting’ liquid down an 
inclined plane. This type of flow is characterized by a complete wetting of the surface 
by the liquid and by the absence of any dry spots (figure 1). This continuous film can 
be laminar or turbulent or it can present waves (see for example the work of Nusselt 
1916; Benjamin 1957 ; Yih 1963). The flow regime is usually determined by means of 
the (conveniently simplified) Navier-Stokes equations. For stability analysis the 
Orr-Sommerfeld equation has been widely used. 

If a ‘non-wetting’ liquid is considered, several different regimes can be observed 
as the flow rate of the liquid is increased. At very low flow rates, a series of droplets 
slide successively down the surface a t  a constant speed (figure 2). Dussan V. (1985) 
showed that the contact line between the droplet and the solid must contain straight 
portions. Her elegant theory is unfortunately limited to small contact angle 
hysteresis and does not take into account the viscosity of the liquid. 

As the flow increases, the distance between two sliding droplets decreases until a 
point is reached where two successive droplets touch and a single straight laminar 
rivulet is formed (figure 3). This linear laminar rivulet (which can be considered as 
a special case of the film flow, see also Doniec 1988) has been the flow pattern best 
investigated after that of two-dimensional film flow. Kern (1969) and Towell & 
Rothfeld (1966) both described the shape and the velocity field of the linear laminar 
rivulet by simultaneously solving the Navier-Stokes and the meniscus equations. 
From this solution they derived the functional dependence of a characteristic rivulet 
dimension on the flow rate (Kern used the rivulet height, Towell & Rothfeld the 
width). Towell & Rothfeld give a relatively complicated general solution to the 
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FIGURE 5. Oscillating or pendulum rivulet. 

problem but show that for systems with a ‘bad wettability ’ the rivulet cross-section 
can be assumed to be a segment of a circle. For systems with a good wettability they 
showed that the general solution can be simplified by assuming a ‘flat wide rivulet ’ 
of rectangular cross-section. The theory of Kern (1969) does not consider all the 
wettability parameters and is therefore suspected of being valid only for liquid-solid 
systems that have a similar wettability to the systems he investigated. The theory 
of Towel1 & Rothfeld not only considers the contact angle, it also describes the 
dependence of the rivulet flow on the inclination of the solid surface. 

A further increase of the flow rate leads to an increase of the width and the height 
of the rivulet until another critical flow rate is reached where the straight laminar 
rivulet changes to a meandering stream composed of arcs of circles and some 
approximately straight sections (figure 4). The transition from linear to meandering 
rivulet is characterized by the appearance of waves of very small amplitude and 
wavelength. The characteristics of the rivulet (sinuosity, wavelength and amplitude 
of the waves) depend on the flow rate; for example, the wavelength and the 
amplitude grow as the flow rate increases. Nakagawa & Scott (1984) showed that 
contact-angle hysteresis is the most probable reason for meandering and helicoidal 
flow is only a consequence. Furthermore they showed qualitatively how the sinuosity 
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of the stream (the ratio of the total stream length to the length of the projection of the 
stream on the line of maximum slope of the surface) depends on the discharge rate 
and the surface slope. 

If the flow rate exceeds another critical value, the meandering rivulet is no longer 
stable and a pendulum or oscillating rivulet (figure 5 )  is formed : the original rivulet 
decays and sheds several smaller ones at a constant rate. This rivulet decay 
frequency (number of sub-rivulets that are created per unit time) increases with 
increasing flow rate. Rivulet break-up is a dynamic process and therefore difficult to 
illustrate by means of a photograph. In spite of that, it is possible to see two 
subrivulets to the left of the main rivulet as well as a third one to the right that has 
just split off from the main rivulet. All these patterns can be observed once the liquid 
has flowed a certain distance downstream from the point at  which it was brought 
onto the plate. This distance greatly depends on the liquid flow rate and on the way 
the liquid is brought onto the plate and can vary between a few millimetres for 
droplet flow to more than a metre for a linear turbulent rivulet. 

A given solid-liquid system will display one or more of these regimes depending on 
the following variables : liquid density, viscosity, surface tension, contact angle 
between liquid and solid, plane inclination and liquid flow rate. For example, in the 
case of a liquid-solid system with a good wettability, only film flow exists over 
almost the whole plane inclination and flow rate ranges. For the flow of water over 
Plexiglas, droplet, rivulet, meandering rivulet and oscillating rivulet flows have been 
observed. 

3. Experimental work 
Figure 6 shows a schematic diagram of the experimental arrangement. The smooth 

test plates (AISI 316L stainless steel and polypropylene) were 1 m long and 0.5 m 
wide. The surface roughness was measured by the needle-scanning technique. 
Typical roughness values were in the range of 3 to 8 x lo-' m. Several liquid systems 
were used in order to span as wide a range of physical properties as possible. 
Triethylene glycol, glycerol-water and ethanol-water mixtures of different com- 
positions were employed to investigate the effects of viscosity and surface tension. 
The test liquid was released onto the centreline of the plate at  a point 0.2 m down 
the slope from the upper edge through a smooth-ended glass tube of 0.005 m inner 
diameter and 0.15 m length. The liquid flowing down the plate was collected in a 
gutter and pumped into an overflow tank which permitted a constant discharge rate. 
The flow was controlled by a manual valve and a rotameter. 

Since the contact angle and therefore the flow pattern were expected to be 
sensitive to the condition of the plate surface, special attention was given to the 
cleaning procedure. Before each run the plate was carefully prepared by wiping i t  
with soft lint-free hygroscopic tissues and rinsing it with distilled water, ethanol and 
acetone. In this way, dust particles and any traces of the previous test system were 
removed. Additionally, an initially dry surface was found to be essential for 
reproducible measurements, otherwise the rivulet tended to follow paths that had 
already been wetted. For that reason the surface was dried 30 min prior to each run. 
It is important to note that a stainless steel surface that is clean is hydrophilic, 
completely wetted by water and should not have displayed any of the effects 
described in this paper. But a steel surface has a very high surface energy and it 
strongly attracts the oils which abound in its manufacturing environment. The 
cleaning process described here could not possibly have removed this very thin layer. 
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Therefore, it must be assumed that an organic surface film covered the surface, 
making it hydrophobic. This does not invalidate the experiments, since the cleaning 
procedure did produce a reproducible surface which is the critical issue. Although 
this point does not materially affect the results, i t  is important to avoid any 
misconceptions concerning solid wettability . 

The experimental variables which were independently varied were the liquid 
viscosity, surface tension and flow rate, the plate material and the inclination of the 
plate. For the different flow regimes, flow characteristics such as width and height of 
the rivulet and in the case of a pendulum rivulet, the rivulet decay frequency were 
measured. 

The inclination of the plate was measured by a protractor to within 1'. The height 
of straight rivulets a t  their centreline was measured 0.20 m down stream from the 
glass tube mouth by means of a micrometer gauge. The micrometer was attached 
solidly to the plate and was carefully lowered from above the rivulet until its tip just 
touched the surface of the rivulet. This technique was precise enough to measure 
rivulet height to within 3 x m. All experiments were recorded by a video-camera 
incorporating a macro-objective ; the camera was placed perpendicular to the plate. 
The width of the rivulet was measured by comparing the size of its magnified image 
on the TV-screen to that of a reference scale placed on the plate surface beside the 
rivulet. Calibration runs showed that in this way the width of the rivulet could be 
measured to better than 5 x m including focusing and parallax errors. The decay 
frequency (number of subrivulets that split off from the original one per unit time) 
was measured by counting the number of subrivulets in a given time (between 10 and 
60 s, depending on the frequency). At high decay frequencies the video film was run 
in the slow motion mode and the timescale correspondingly corrected. 

Contact angles were determined both statically and dynamically (see table 1). 
Static advancing and receding contact angle measurements were performed by 
determining the tangent to the (greatly magnified) profile of a sitting drop on the 
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Steel 

A :  9 
R :  < 3  
D: 8 + 4  

A :  39 
R: 26 
D: 41+6 

I- Ethanol (96 %) 
+ 

Water (4%) 

Ethanol (28 %) 
+ 

Water (72%) 

Triethyleneglycol (TEG) A : 37 
R :  25 
D: 38f10 

Water 

Polypropylene 

A 23 
R :  16 
D: 25f6  

A :  63 
R :  47 
D: 60k5  

A :  59 
R :  43 
D: 58f8  

A :  62 A :  88 
R:  49 R :  82 
D: 6 8 k 8  D: 8 6 f 3  

A :  60 A :  71 
R :  48 R :  63 
D: 6 2 f 5  D: 69f5  

A :  68 A :  75 
R :  59 R :  64 
D: 67+8 D: 7 8 f 8  

I- 
I- 

Ethanol (14 %) 

Water (86%) 

Glycerin (60 %) 

Water (40%) 

+ 

receding, D : dynamic 
TABLE 1. Contact angles (in degrees) for some of the systems used (at 22 "C). A :  advancing, R :  

+ 

horizontal plate. Dynamic measurements were made from the width and the heighth 
of a linear laminar rivulet by assuming the rivulet cross-section to be a segment of 
a circle. This assumption has been shown by Towel1 & Rothfeld (1966) to yield 
reasonably accurate results. For some of the systems important differences between 
static and dynamic measurements were found (see table 1). The accuracy of static 
contact angle measurements was estimated to be approximately 3" (two standard 
deviations). The accuracy of the dynamic measurements is included in table 1. It is 
interesting to note that the dynamic contact angles are very close to the static 
advancing contact angle in all cases ; they can actually be considered to be identical 
within the experimental error. Furthermore, Nakagawa & Scott (1984) showed that 
dynamic contact angles can vary along the rivulet, most probably due to microscopic 
surface imperfections. Since the dynamically measured values were thought to be 
more representative of the actual flow conditions they were used throughout this 
work. Fortunately, the equations describing rivulet behaviour are not strongly 
sensitive to the value of the contact angle above 15' and therefore an experimental 
uncertainty of a few degrees does not introduce large errors. 

4. Results 
4.1. Stability domains and transition points 

For the system stainless steellwater all the flow patterns depicted in figures 1-5 
could be observed for all plate inclinations, including vertical plates, and 
independently of the way the liquid was brought onto the plate. These flow patterns 
were found to be stable within certain ranges of physical properties, plate inclination 
and plate material. Relatively sharp transitions exist between the different stability 
domains. 
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FIGURE 7. Stability domains as a function of plate inclination. B, transition from meander to 
pendulum rivulet ; , transition from linear rivulet to meander ; A, transition from droplets to 
linear rivulet. 

Given the large number of independent variables, it is difficult to give a concise 
representation of the multidimensional stability regions. 

4.1.1. Influence of plate inclination 

Figure 7 shows the influence of plate inclination and flow rate on the existence 
domains, the abscissa and the ordinate being surface slope and liquid discharge rate 
respectively. It is apparent from this figure that as the surface slope increases, all the 
transitions occur a t  lower flow rates. 

The simplest explanation for this effect is that the transition points of a given 
system depend only on the component of gravity parallel to the plate surface. Under 
this assumption one would expect the relationship 

m, = masina, (1) 

to hold, where m, and ma represent the transition flow rates for a vertical plate and 
for a plate inclination of angle a respectively. (Such a dependence has been shown by 
Allen & Biggin (1974) to hold for the discharge rate of a straight laminar rivulet.) The 
curves in figure 7 were drawn by converting the transition flow rates at 90" to other 
inclinations by means of (1).  

The possibility of scaling the transition points to 90' (or to any other reference 
value) is very convenient, because one of the free parameters can be eliminated : it 
is only necessary to measure the transition points for a given plate inclination ; the 
corresponding values at  different inclinations can then be determined by means of 
(l) ,  other things being equal. For this reason it was decided to work with a single 
inclination angle (70') for the rest of the experiments. 

4.1.2. Influence of viscosity and surface tension 
Figures 8 and 9 illustrate the influence of viscosity and surface tension respectively 

on the transition points for the stainless steel surface. Viscosity and surface tension 
ranges were investigated by varying the concentration of glycerol-water and 
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FIGURE 8. Effect of viscosity on stability domains. For key see figure 7. 

ethanol-water mixtures. Adding glycerol to water increases the viscosity drastically 
without altering the surface tension significantly. The addition of ethanol greatly 
reduces the surface tension without affecting the viscosity too much. Figures 8 and 
9 can only be considered as semiquantitative because strictly speaking, two 
parameters are being changed simultaneously. 

Figure 8 represents the transition flow rates (measured at an inclination angle of 
70" and referred to the vertical plate) as a function of viscosity for an almost constant 
u of about 0.070 N/m. The transition points were found to increase with increasing 
viscosity except for the transition from droplet flow to linear rivulet. The droplet 
flow region vanished as the viscosity of the liquid increased : since the droplet size is 
mainly controlled by surface tension and its speed down the plate by viscosity, there 
must be a combination of ,u and a a t  which the diameter of the drop is equal to the 
distance between the centres of two consecutive drops, so that all drops merge into 
a single rivulet. For glycerol-water mixtures (a between 0.06 and 0.07 N/m) this 
happened at  about 0.012 Pa s. For liquids of ,u greater than about 0.020 Pa s the 
transition points were difficult to observe (owing among other things to very small 
wave amplitudes of the meandering rivulet and to very long transients until the 
liquid settled into a stable flow pattern). Experiments with liquids of even higher 
viscosities indicate that for very viscous liquids only the linear rivulet domain exists 
(this would correspond to a vertical asymptote in figure 8). The exact value a t  which 
the other domains vanish depends of course on the density and surface tension of the 
liquid and the nature of the surface. 

Figure 9 represents the transition flow rates (measured at an inclination angle of 
70' and referred to the vertical plate) as a function of surface tension (for an almost 
constant ,u of about 0.001 Pa s). The transition points between the different flow 
patterns pass through a relatively flat minimum at about 0.045 N/m. It is interesting 
to  note that there is again a value of the surface tension (in this case about 
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FIGURE 9. Effect of surface tension on stability domains. For key see figure 7. 

0.029 N/m) below which no droplet, meandering or oscillating rivulet flow exist and 
the linear rivulet domain grows. At even lower surface tensions, the linear broad 
rivulet is indistinguishable from film flow (owing to the good wettability). 

4.2. Decay frequency of oscillating rivulets 
If the flow rate of a meandering rivulet was increased beyond the transition point, 
a new flow pattern appeared: the oscillating or pendulum rivulet. This flow was 
characterized by a periodic decay of the unstable main meandering rivulet in several 
smaller ones which flowed as virtually straight rivulets. These subrivulets were found 
to be all of the same size within the measurement error (analysis of video films). The 
transition is thought to be accompanied by a dramatic increase in heat and mass 
transfer between the plate and the liquid and/or between the liquid and the 
surrounding gaseous phase. Thus, the prediction of the transition point and of the 
decay frequency is of importance for the understanding of heat and mass transfer 
processes. 

Figure 10 shows some experimental values of the rivulet decay frequencies 
(measured at a! = 70") for a variety of liquid/solid systems as a function of the mass 
flow rate, referred to the vertical plate. As wide a range as possible of flow rates, 
physical properties (viscosity and surface tension) and different surfaces were 
investigated. It can be seen that all these parameters have a large effect on the decay 
frequency. As expected, and for the same flow rate and physical properties, bad 
wettability leads to higher oscillation frequencies. The influence of liquid flow rate on 
decay frequency is fairly clear : the decay frequency increases approximately linearly 
with increasing flow rate. However, no straightforward dependence on viscosity and 
surface tension can be deduced from figure 10. 
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FIGURE 10. Decay frequencies of oscillating rivulets as a function of liquid discharge rate. 0 ,  water 
on steel ; 0,  water on polypropylene ; A, glycerol 60 YO on steel ; A, glycerol 60 % on polypropylene ; 
m, ethanol 27 YO on polypropylene. 

5. Theoretical approach 
In the following, a model is presented that attempts to predict the transition point 

from a single rivulet to an oscillating (pendulum) rivulet configuration and 
furthermore how the rivulet decay frequency depends on the discharge rate and the 
physical properties of the system. 

The present model is based on an energy criterion : the transition is postulated to 
occur when the rivulet flow ceases to be stable, that is, when the total energy of the 
single rivulet can be lowered by its decaying in several smaller ones (subrivulets). 
Therefore the strategy is to formulate the total energy of the system and then to find 
the minimum value of this energy as a function of the number of subrivulets for a 
given total flow rate. 

5.1. Stability of a rivulet 
In  order to compute the energy of the system, an adequate representation of the 
rivulet has to be used. Doniec (1984) studied film breakdown by describing the exact 
rivulet profile shape ; Mikielewicz & Moszynski (1976) and Bankoff (1971) assumed 
the rivulet cross-section to be a segment of a circle. A comparison of their results 
shows the latter approximation to be an adequate one, in agreement with Towell & 
Rothfeld's (1966) analysis. Allen & Biggin (1974) obtained the exact velocity field by 
solving the full Poisson equation by the finite elements method and concluded that 
the rivulet has an inner 'core ' where the flow is basically that of a two-dimensional 
thin film. They showed that the zero-order solution of Towell & Rothfeld (1966) gives 
a good representation of the flow profile except in the neighbourhood of the 
gas-liquid interface. Therefore in this work the cross-section of a rivulet was 
considered to be a segment of a circle of radius R as shown in figure 11. The height 
of the rivulet h ( z ) ,  where h is the rivulet thickness a t  a horizontal distance z from the 
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FIQURE 11. Simplified rivulet model. 

centre is given, in terms of the polar subtended angle 8, by 

h(z) = ~ ( c o s  e- cos e,), (2) 

where 8, is the solid-liquid contact angle. The velocity profile in the rivulet is 
(Bankoff 1971) : 

U(Z> Y) = B(h2 -?Ax)) (B = 3. 

Q = 2 r 1 ( i ) u ( z ,  y)dydx = $BR4f(8,), 

(3) 
P 

The implicit assumption in (3) is that the velocity profile in each slice of width dx and 
thickness h(x) is that of a uniform film of the same thickness (the inaccuracy incurred 
by using such an approximation was found to be smaller than the experimental error 
in the determination of the transition points). The volumetric discharge rate of the 
rivulet is then 

(4) 

where f (8 )  = (COS 8 - cos 8,y cos 8 d8 
0 

= - C O S ~  8, sin 8, - cos 8, sin 8, -9, sin2 B0 + p3,. ( 5 )  

The total energy of the system composed of a rivulet segment of length L and the 
associated dry surface is given by the sum of the kinetic and potential energy of the 
rivulet and the surface energy of the liquid-gas and solid-gas interfaces. The 
potential energy can be shown to be negligible on all accounts for the systems used 
and was not considered in the present study: even for a liquid of high density and 
surface tension like mercury, it amounts to less than 1 %  of the kinetic energy at 
inclinations a > 5". 

Therefore : 
E = $pLAa2 + 2RL8, ulg + 2RL sin 8,(uSl - vsg), (6) 

where : A = 1$2(28,, - sin 28,), (7) 
and from (4) the mean velocity is: 
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Subscript lg indicates liquid-gas interface, sl, solid-liquid interface and sg, solid-gas 
interface. Employing the Young and Dupres equation : 

(VSI - Usg) = - Vlg cos 60, (9) 
the second term in the surface energy equation can be simplified. The use of the 
Young and Dupres equation implies the uniqueness of the contact angle, which is 
then a parameter that relates the various thermodynamically defined surface 
tensions. However, in our experiments, this angle could not be measured 
unambiguously, as shown by the differences between the advancing and receding 
contact angles (hysteresis). This is in disagreement with Young’s equation which 
admits of but one value of the contact angle for any given system a t  equilibrium. In 
spite of this inconsistency, we used the Young and Dupres equation because of its 
simplicity and because the effect of the hysteresis is not very significant if the contact 
angle is greater than about 15’ (that is, there is not a large difference in the total 
energy of the rivulet computed using the advancing and the receding contact angles). 
Substituting equations (7),  (8) and (9) in (6), the total energy in terms of R is 
obtained. 

[f(e)12 p2pLR6 + ~RLv,,(B, - sin 8, cos 8,). (10) 
2 E = -  
9 ( 8, - sin 8, cos 8,) 

Solving relationship (4) for R and replacing in (10) 

p 2 5 .  (11) E = (”1.52 L Q1.5 + 2(%)0.26  La 2 (8, - sin 8, cos 8,) 
ep ’“ (8, -sin 8, cos 6,) P5 f(6)0.z5 

The total energy of n rivulets having the same total volumetric flow rate as the 
original is therefore : 

Etot = nE, with Q, = -. 

For the single rivulet to be stable, the total energy of the system formed by n rivulets 
(which is a function of n) must not exhibit a minimum at n > 1 (if such a minimum 
existed, the configuration formed by n rivulets would be more stable than the single 
rivulet). Or, expressed in a different way, it is impossible for one rivulet to divide into 
two or more rivulets if Etot is an increasing function of n for n > 1. Thus, substituting 

(12) 
Qtot 

n 

- 

E and Q from (12) : 

Etot = n (B(9’’5 + C (:y’25), 
where B and C represent the prefactors (functions of the physical properties and 
contact angle) in (11). (A more general form of the equation representing the total 
energy could have been written if analytical expressions for the area and perimeter 
of the rivulet were available. Since the assumption of circular cross-section is a good 
approximation below Qc’ as defined in (31) and leads to analytically tractable 
expressions, it  was the approach we followed. The good agreement with the 
experimental results justifies this procedure. The rigorous approach remains of 
course open to a fully numerical solution, but no significant accuracy return on the 
computational investment can be expected.) 

Differentiating the total energy with respect to n, equating to zero and solving for 
n gives : 

n = (gj’”.’~. 
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The transition point to  oscillating rivulet flow (decay of the main rivulet into several 
subrivulets) will be attained when n = 1, leading to the critical flow rate &cr: 

3 c  o.8 a!i8p0.6 (6, - sin 6, cos 0,)1.6 
Qc' = (%) = 5.348 

P1.4g0.6 f(60) 

In order to transform above equation in a dimensionless form we introduce the 
Reynolds number : a4hp 

P Re=-, (16) 

where h is the maximum height of the rivulet. 

h =  R ( ~ - c o s ~ , ) .  (17) 
Solving (4) for R ,  substituting into (17) and (8) and replacing these terms in (16), we 
obtain the dependence of the Reynolds number on the volumetric flow rate: 

R e  = 4(;)0.25 
(l  - 'OS ' 0 )  

(6, - sin 6, cos 0,) 
[ f ( 6 ) ] 0 . 2 5  P Z 6 P  Q0.75 

P 
Setting Q = Q"' (equation (14)) the critical Reynolds number is: 

po%;is (1 - cos 6,) (0, -sin 6, cos 00)o.2 
f(6)0.2 

ReC' = 12.71 
9°.2Po.8 

We now introduce the dimensionless capillary-buoyancy number K ,  : 

and hence (19) becomes: 
ReC' = 12.71K;;;0.2F(6), 

were F ( 6 )  represents the contact angle factor in (18) ; or if we introduce the modified 
critical Reynolds number, Re:,,f,, 

- 12.71K;0.2. 
ReCr 

= - - 
F(8)  

5.2. Rivulet decay frequency 
The rivulet decay frequency f is defined as the number of subrivulets in which the 
main rivulet decays per unit time, that is, the number of subrivulets shed by the 
main rivulet per unit time: n - 1  

f=,. 

To represent this frequency, we introduce the dimensionless Strouhal number N,, : 

(24) N,, = f A t  = n-1, 

Solving (17) for Q and introducing into (23) leads to: 

0.266 

* (26) Ns,+ 1 = 0.03371 - SP4 o.266 f ( @  Re1.333 

(pv&) ((l-cos60)5(0,-sin6,cos60) 
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Nst + 1 = 0.033 71KOp.2asF(8)1.333Re1.333, (27) 

and introducing the dimensionless frequency parameter o, the following relationship 
between frequency and flow rate is found: 

6. Discussion 

model is discussed, with respect to the experimental results. 
In  this section the applicability of several published theories as well as of our own 

6.1. Plate inclination 
As has been shown in figure 7, the effect of plate inclination on the transition points 
between different flow regimes can be suitably described by means of (1). A similarly 
good agreement with the experimental values for all transition points was found in 
all runs, which substantiates the validity of (1). 

The investigation of the transition lines for the system polypropylene-water led to 
the same relationship (l), having, of course, different transition flow rates for a given 
inclination owing to the different wettability characteristics. 

Nakagawa & Scott (1984) qualitatively described their transition curves for 
Plexiglas/water as linear (transition from droplet flow to meandering rivulet) or 
exponential (transition from meandering to oscillating rivulet). However an 
evaluation of their published data shows them to be consistent with the sinous 
relationship (1) as well. 

According to Towel1 & Rothfeld (1966), two limiting rivulet shapes can be 
distisguished, leading to two different functional dependencies between the 
dimensionless rivulet width P and the dimensionless flow rate 52: 

(a) for a small rivulet of approximately circular cross-section : 

sin4 8, 
.f(@ ' 

P4 = 2452- 

(b )  for a wide flat rivulet : 

where 

p = @  l 
sin3(+9,) ' 

pgcosa 0.5 , 52 = p B  cot o1 cos a .  
P = b ( 7 )  4 g  

One of these two limiting cases was found to hold for all values of 52 except in a 
relatively narrow transition region. The transition or critical flow rate QCr can be 
obtained by finding the intersection of (29) and (30): 

Hence, for a given system, the shape of the rivulet a t  values of 52 below 52.. can be 
expected to be a sector of a circle. Figure 12 shows a plot of P versus 52 for two 
solid-liquid systems with very different wettability characteristics. Points lying 
above QCr and fitting (30) can only be found in the case of a solid-liquid system with 
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FIQURE 12. Rivulet width aa a function of liquid discharge rate (dimensionless). Continuous lines 
represent predictions of Towel1 & Rothfeld's theory. W, EtOH 96% on stainless steel; 0 ,  water 
on stainless steel. 

good wettability, like 96% ethanol on stainless steel. The stability and decay 
frequencies of rivulets represented by points above f2"' cannot be predicted by the 
theory presented, since the assumption of a circular rivulet cross-section no longer 
holds. In  the case of a bad wetting system, e.g. water on stainless steel, the flat wide 
rivulet region cannot be reached since the rivulet flow becomes unstable below aCr. 
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FIGURE 14. Oscillating rivulet decay frequency as a function of liquid discharge rate 
(dimensionless). Line represents theoretical predictions according to (28). 

In  order to estimate the applicability of the present theory to the transition from 
meandering to oscillating rivulet flow, the experimental points were plotted together 
with the theoretical prediction of (22). The points correspond to different liquid-solid 
systems (note that K ,  depends on the physical properties and can only be modified 
by using liquid-solid systems with different physical properties). The accuracy of the 
experimental values is influenced by some of the transition points not being very 
sharply defined and by contact angle hysteresis as described for instance by Blake & 
Haynes (1973). 

The agreement between experiment and theory is good, especially in view of the 
fact that (22) was derived from first principles and does not contain any adjustable 
parameters. Besides, (22) correctly accounts for the large differences in viscosity, 
surface tension and solid wettability between the different systems. The points 
deviating from the curve at K ,  = correspond to systems whose transition point 
lies above Qcr, that is, where the rivulet cross-section is not any more a sector of a 
circle and the theory cannot apply. 

It should be noted here that the theory is actually based on an analysis of the 
stability of a straight rivulet and does not consider the intermediate Aow pattern of 
a meandering stream. This may explain the fact that the theory predicts transition 
points slightly higher than the experimental ones as shown in figure 13. Nakagawa 
& Scott (1984) showed that meanders have an asymmetrical cross-section and hence 
an asymmetrical velocity profile which may cause a split-off of subrivulets at lower 
flow rates than expected. 

The results obtained from the theory for the decay frequency of oscillating rivulets 
are presented in figure 14. The experimental dimensionless decay frequencies 
(frequency parameter) are plotted against the Reynolds number. The predictions of 
(28) are shown as a solid line. Again, the theoretical predictions closely match the 
experimental values for a large number of liquid-solid systems and flow rates, even 
though (28) does not contain freely adjustable parameters. 
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7. Conclusions 
A theoretical model for rivulet flow stability was presented which is able to predict 

rivulet instability (transition to meandering rivulet) and decay frequency as a 
function of physical properties and flow rate. The validity of this model is limited to 
solid-liquid systems below QCr, that is, it does not apply to  flat wide rivulets of 
almost rectangular cross-section. The model does not contain freely adjustable 
parameters and shows very satisfactory agreement with experimental data. 
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